

Our Team

The Experts behind the AutoDrone UA Project

PROF. KLAUS RICHTERFraunhofer IFF Magdeburg

Expert in digital logistics technologies

SIMON GREMMLER

Tauber Geo-Consult

Geowissenschaftler & Ingenieure GmbH

Expert in explosive ordnance disposal and geophysicist

PROF. VYACHESLAV KHARCHENKO
Kharkiv Aviation Institute Ukraine

Expert in explosive ordnance disposal sensors

Deadly Danger even in Peace

Landmines claim more and more Civilian Victims

© Fraunhofer IFF

Deadly Danger even in Peace

Remnants of War and Mines contaminate Areas for Decades

Our Experience so far

Explosive Ordnance (EO) Detection for ferromagnetic Materials

Requirements

Systematic flight over rough terrain at constant low flight altitude < 1m with 2m wide metal detector system Magdrone R4.3

Objectives

Automated UAV flight for accurate detection of ferromagnetic materials such as EO's under ground, even in poor GNSS conditions.

Outcomes

Prototype for automatic flight of rough terrain using additional 3D sensor technology for highly accurate terrain scans in realtime

First Flight Tests

- Remove jerks
- increase speed
- RTH (Return to home) scenario change battery optimize pause/resume behavior

Continued real Tests with optimized Flight Control

Latency optimization

Current State - precisly Flight Planning and -execution

- ✓ Constant low flight altitude (50 cm)
- ✓ Low vibration at high flight speed (3m/s \rightarrow 5 m/s)
- ✓ High temporal synchronization of the measurement data between sensors

Comparison between ground-guided Movement and automated Drone Flight

Advantages of an automated drone flight:

- ✓ Fewer artifacts due to smoother motion control of the magnetometer sensor
- ✓ higher scanning speed

State of the art: Ground-guided manual movement with a handcart

AutoDrone UA

From a safe distance:
Autonomous drones
for exploring the
terrain and detecting
remnants of war

The Variety of EOs and Sensors

Detection of non magnetic EOs close to the ground surface

NLJD

Thermal camera

(Non Linear Junction Detection)

Detection of EO made of plastic with low or less magnetic content

multi- and hyperspectral camera

Detection of anomalies and EOs

GPR (Ground Penetrating Radar)

Detection of EO made of plastic with low or less magnetic content

Magnetic field sensor

Detection of artellery ammunition

Different types of EO:

- anti-tank mines
- anti-personnel mines
- hand-held anti-personnel grenades
- hand-held anti-tank grenades
- artillery ammunition

Our technical Solution

Initial situation:

Precision control for the single drone (TRL 6)
Automatic planning of the swarm mission
Sensor-specific flight path planning
Georeferenced data processing and analysis
Resilient flight communication

Project result: Resilient drone swarm (TRL 8)

AutoDrone Swarm Network Control

Just one manager for the entire swarm system

One Solution for all automated swarm-based detection tasks

High level secured flight control in swarm

Advanced obstacle avoidance within swarms of drones

Quality-assured flight control for reliable detection of EOs

Let's shape the future together - ON SAFE GROUND -

Support our AutoDrone UA project!

