Robots in the Smart Factory

Dr. Michael Klos, YASKAWA Robotics Europe

Dr.-Ing. Michael Klos General Manager Business Development Robotics Division

YASKAWA Europe GmbH Robotics Division Yaskawastr. 1

85391 Allershausen GERMANY www.yaskawa.eu.com

Mobile: +49 (0) 151 / 613 405 25 Michael.Klos@yaskawa.eu.com

Robots in the Smart Factory

Dr. Michael Klos, YASKAWA Robotics Europe

- 1. Who is Yaskawa ?
- 2. Smart Digital Workflows
- 3. Smart IoT and AI based Production Management

YASKAWA

- 4. Smart Robotics Plug & Play Mindset
- 5. Smart Programming with the Smart Pendant
- 6. Conclusions

Robots in the Smart Factory

Dr. Michael Klos, YASKAWA Robotics Europe

1. Who is Yaskawa ?

- 2. Smart Digital Workflows
- 3. Smart IoT and AI based Production Management

YASKAWA

- 4. Smart Robotics Plug & Play Mindset
- 5. Smart Programming with the Smart Pendant
- 6. Conclusions

PRODUCTS

Accumulated Production (2020)

INNOVATION

Inventor of

Mechatronics

Introduction of a holistic engineering philosophy (1969).

YASKAWA ROBOTICS EUROPE – PORTFOLIO OVERVIEW

THE MOTOMAN ROBOT PORTFOLIO (> 130 MODELS)

PERIPHERAL PRODUCTS (HARDWARE)

WORKPIECE POSITIONERS (up to 72 Axes in coordinated Motion)

Modular System, 200 Standard Models + Customer specific Models + Jigs

Pre-configured Product & Function Packages Compact Spot Welding Guns

YASKAWA

SOFTWARE AND CONNECTIVITY

OFFLINE SIMULATION / OLP

Offline Simulation Engineering Tools HTML HMI, FTP, Backup, Remote Programming

PROGRAMMING AND OPERATING

<complex-block>

Software Apps & Wizards

IoT – INDUSTRIE 4.0

I3-Mechatronics, YASKAWA Cockpit, Data Collectors, OPC-UA

COMMUNICATION

I/O, Fieldbus, Varan, Euromaps, Functional Safety, PLC, ROS, Interfaces

FUNCTIONAL APPLICATION SOFTWARE PACKAGES

CONTROLLER FUNCTIONS

> 200 Application specific Software Options & Technology Packs, Sensor / Weld Timer Integrations, Error Recovery Routines

> 100 Functions - Sensors, Vision, Communication, Interfaces

STANDARD ARC WELDING CELLS

YASKAWA

SUPPORTING THE WORLD OF ROBOT PROGRAMMING

YASKAWA

© 2021 YASKAWA CONFIDENTIAL INFORMATION ALL RIGHTS RESERVED

September 23, 2021 | 1

SYSTEM BUSINESS – TURNKEY ROBOT WELDING SYSTEMS

GLOBAL YASKAWA ACADEMY

Live Trainings

E-Learning

Robots in the Smart Factory

Dr. Michael Klos, YASKAWA Robotics Europe

- 1. Who is Yaskawa ?
- 2. Smart Digital Workflows
- 3. Smart IoT and AI based Production Management

VASKAWA

- 4. Smart Robotics Plug & Play Mindset
- 5. Smart Programming with the Smart Pendant
- 6. Conclusions

OFFLINE SIMULATION - MOTOSIM

YASKAWA

DIGITAL TWIN - ON-SCREEN 3D SIMULATION

CT LA LE SERVO (m) (m) 30 Viewer 30 Start Job *LABE 10.00 Sciences 10.00 1 61 . Distallour Outputti TEA + Seconds 10.00 C Time & 500 (secor -+ Digitalout Outputs(TEACH -How at ARE! -ADVANCED RUN Test C R + -+ -One Cycle LOW MAST NOIS SMART II PAUSE RUN STOP

Toggle between Real Motion and 3D Simulation

Setup and Visualisation of Safety Range Limits

MACHINE VISION (PICK&PLACE)

MACHINE VISION GUIDED SEAM FINDING

CAD/CAM PROGRAMMING

YASKAWA

VIRTUAL REALITY OFFLINE PROGRAMMING (2017)

VR ROBOTICS SIMULATOR

VR CELL BIULDING

© 2021 YASKAWA CONFIDENTIAL INFORMATION ALL RIGHTS RESERVED

September 23, 2021

22

PLC (SPS) FUNCTION BLOCKS - MOTOLOGIX

Robot Programming via PLC (IEC 61131) Function Blocks

- Embedded in the PLC Programmer's software coding environment
- Function Block Library
- Same Performance as convential TP-Programming
- Robot Peripherals directly controlled via PLS (Gripper, Conveyor, Sensors)
- No robot specific programming skills or trainings required

SIEMENS Ingenuity for life

BECKHOFT

Rockwell Automation

Robots in the Smart Factory

Dr. Michael Klos, YASKAWA Robotics Europe

- 1. Who is Yaskawa ?
- 2. Smart Digital Workflows
- 3. Smart IoT and AI based Production Management

VASKAWA

- 4. Smart Robotics Plug & Play Mindset
- 5. Smart Programming with the Smart Pendant
- 6. Conclusions

INDUSTRY 4.0 – SO MANY QUESTIONS

. 11246703213942603683520966701614733366880617518454111681368808585711816984270751255808912631821752566939126318277551865399118779996151417070693734982126318237555915956538691263182375559186539911877999615141707069373498212631823755591595657368185599118779996151417070693734982126318237555915956573681823575909505617571375618228216956477126498651782204174061830939239175861341383294018240225838692725596147005144243281075275629495355657386912435454505755735918515856641356732949535755019551540537591855130254672691952359548651302546726919523595485455515158566413560128513025467269192345254945132954514245412583588456573269103285410463629854610495872591515185664413560128513025467269192539545142454125835854565329691023442541258358545653269103256110366455698262220684447421981198185504285012851302546726918251907340245449863183265637987862198511046362985461049587251119139907228004385942880953958816555155774828934149941136241658867535691832565110366455698262220684447421981108187240049295034819951345245498657515294717434902411107072303981033786152379371122099926564448295591182055733152641497493734552244693241474219811081872400492950348199534756420865988177764159233798711220999265644482955011820557331526441324564208659881776405928359888751152950926564488269348995011547499766411972345642086595871776405928359885318766488368348955015474997664119723476403772347062070952587831876648836834895501547499786411972347640271782419325054182945051478920799525478318564296843118601547599201718921693375522469337597932012157994012733721069377592502746050799423478674034756420086595871789401273372069437728345922746907282445571428276857992471783721069337552074050279904377837920694377283499222804355731482146431166135569208745087789201215799401273372106943772834992280274060798234786740345503294378533765207994012733720694377283499228027406079823478674034156671493375505799401273375020693778520749507294092746507998234786740353926193375978620521922803714811321644110103381250672004660999116070028400210098045296403978870433530261933785532992521928037148

Will computers take control over my production?
How can a production system optimize itself without me?
Do I need millions of sensors producing billions of data?
Collecting data is not intelligent decision making !
Will the system take decisions away from me ?
Who grants for Process Stability ?
Where to start resolving error situations ?
Is my data still my property ?

Who is leading the Data Revolution? IT-Gang? Can I trust them?

And who is taking the risk ?
Oh God, I have to replace my production staff with IT nerds ?
What is the real benefit for my company and customers ?
Will my customer ever pay for all those efforts ?
Is this all really "lean" ?

.

INDUSTRY 4.0 – SO MANY QUESTIONS

But I just want this:

ERROR FREE PRODUCTION

QUICK RECOVERY FROM PRODUCTION STOPS

UNDERSTANDING THE DIGITAL REVOLUTION FROM "DATA" TO "INFORMATION"

PRODUCTION LIVE

THE PAST

Smart Factory PERFORMANCE

Aggregate & Display Data

- \Rightarrow strong KPIs
- \Rightarrow statistical interpretation
- \Rightarrow manual interventions

"Big Data"

Display Data

- \Rightarrow Interfacing
- \Rightarrow Some KPI
- \Rightarrow manual interpretation
- \Rightarrow manual interventions

"Small Data"

THE FUTURE

Drive Process using Data

- \Rightarrow Powerful KPIs
- ⇒ automatic, intelligent evaluation and predictions
- ⇒ automatic interventions supported by AI

"Big Data & Al"

YASKAWA

27

HOW IS MY FACTORY RUNNING ?

YASKAWA

DO ALL PRODUCTION CELLS WORK PROPERLY ?

ARE ALL COMPONENTS IN GOOD CONDITION?

NOTIFY ME IMMEDIATELY IN CASE OF PROBLEMS !

WHERE IS THE PROBLEM ?

WHICH COMPONENT CAUSES THE PROBLEM ?

GIVE ME MATERIAL TO FIX THE PROBLEM !

WELDI	NG					>
78.9	9% Log files				NEW SCHEDULE	*
	Түре	AVAILABL	E		<u>+</u>	C
	JOB	Tool data				
	FILE / GENERAL DATA	Weaving data				
WEI DING	PARAMETER	User coordina	ite data			
WELDING MODELTVPE 1-06VX8-A0*(GP8)	I/O DATA SYSTEM	Variable data				
	DATA SYSTEM BACKUP	Variable data				
FAULTS WARNING INFO	ALL SINGLE FILES BACKUP	User coordina	ite data			
0 23 57		Variable data				
5 68 TOTAL TOTAL		User coordina	ate data			
DEVICES CONNECTED 2/2 >	ACTIVE BACKUPS					
A COLUMN TWO IS NOT THE OWNER.	I NAME	FRETVPE	GEPEAT	LAST UPDATE		
26	Daily backup - 2019 to 2020	DAT	every day	14.01.19 - 13:31:23		
DX200 Welding gun	2 Weekly backup - 2018 to 2019	DAT	every week	15.01.19 - 12:00:18		
PART OF LOCATION Yaskawa factory	3 Monthly backup - 2018 to 2019	DAT	every month	01.01.19 - 13:31:23		
LINE Line3 GELL Arc welding cell	4 Yearly backup - 2017 to 2022	DAT	every year	011.01.19 - 12:00:18		

EFFICIENT SCHEDULING OF MY MAINTENANCE STAFF

Cal	end	lar											SEARCH Q D	IOWINLOAD 🚣 FILTER
								From 06. to	12. April 2019					
	<			April 2	019		>	STATUS	DESCRIPTION	CIDEATOS:	DATE/UNE		high and here	
	-0.00	Nion	0.07	Wed	080	0.0	Sar	CREATED	Predictive Maintenance	AUTO	04/06/2019		FAULT - (Description)	
	28	-29	1	2	а	4	5	Loosanee	GP8 - JP1234 (Welding cell 1)		12:00 - 16:00		DATE / TIME: 04072019 / 12:24:11	NAME.
	6	7	8	9	10	11	12	DELETED	Inspection - Yaskawa Maintenance MA2010 (Welding cell 1)	SCHEDULED	04/06/2019		EVENT FAULT	aronewichtion
	13	14	15	16	17	18	19						SOURCE GP8	STATUS IN PROGRESS
	20	21	22	23	24	25	26	COMPLETED	GP7 (Welding cell 1)	USER	04/06/2019 12:00 - 16:00		CODE 12345	a state benefit
		20	20	20				diaman .	Fault - (Description)	1.000	04/07/2019	e	LOCATION: Allershausen	5H.12M:24S
	~ /	20		30		-	-	CREATED	GP8 (Welding cell 1)	AUTO.	12:00 16:00		SIMILAR DEVICE 12	PARTOF
	3	4	-5	0	1	8		DELETED	HW - End of life GP8 (Welding cell 1)	SCHEDULED	04/07/2019 12:00 - 16:00		DIFFERENT DEVICE, 23	<u>A</u>
	1	PREDICT	IVE MAINT	ENANCE	a	on	7	DOWNLOAD	New SW patch GP8 (Welding cell 1)	USER	04/07/2019 12:00 - 16:00			REVIEW
	1	INSPECT	ION			10	7	CREATED	Predictive Maintenance GP8 - JP1234 (Welding cell 1)	AUTO	04/08/2019			
	-	WARRAN	TY		1	Con J	7	CREATED	Inspection - Yaskawa Maintenance	OTUA	04/08/2019			
	i	WARNIN	а		2	ON	7	DELETER	Service and part replacement	SCHEDUI 5D	04/09/2019			
	1	INFORM	TION		5	ON	7	- and -	GP7 (Welding cell 1)	and the Spine	12:00 - 16:00			
	T	EVENT			7	ON	7	CREATED	Predictive Maintenance GP8 - JP1234 (Welding cell 1)	OTUA	04/09/2019 12:00 - 16:00			
	1	LOG FILE				1.10	7	DOWNLOAD	Service and part replacement GP7 (Welding cell 1)	USER	04/09/2019 12:00 - 16:00			
		TASK			ä	on	7		Inspection - Yaskawa Maintenance		04/10/2019			
	1	NOTE			2	210	7	DELETED	MA2010 (Welding cell 1)	AUTO	12:00 - 16:00			
								1 minutes	HW - End of life		04/10/2019			

PRODUCTION RATE CONTROL

YASKAWA

© 2021 YASKAWA CONFIDENTIAL INFORMATION ALL RIGHTS RESERVED

36

INDUSTRY 4.0 – SO MANY QUESTIONS

Sounds good, but ...

WHAT IS THE REAL PAYBACK OF THIS SOFTWARE ?

YASKAWA

37

ROI CALCULATION – USE CASE (1)

Prevent production downtime with predictive maintenance

Production running in 3 shifts Currently they have 3 maintenance staff in each shift for interventions in case of production stoppages. Total maintenance staff = 9

With predictive maintenance they could have 3 maintenance staff in morning shift + 2 staff in afternoon and night shift. Total maintenance staff = 7

Saving: 2 staff * 45.000 Eur annual salary = 90.000 Eur due to better planning

IoT Software functionality required: device view, calendar diary view, predictive maintenance, scheduling

ROI CALCULATION – USE CASE (2)

Improved efficiency at production interventions

Use case: Production stop due to failure on production machine Currently Yaskawa service staff visits customer to identify the failure (2 day). After identification orders a spare part (1 day). Second visit to replace broken spare part (1 day). Total number of visits = 2. Days to fix the problem = 4.

With IoT Software: Yaskawa reads out data history of machine to identify the failure (1 hour). Spare part is ordered in the same day (1 day delivery). Visit to replace broken part (1 day). Total number of visits = 1. Days to fix the problem = 2.

Saving: 2 days of production stop: 6 shift * 60sec cycle time*5 Eur/part = 14.400 Eur. 1 visit of Yaskawa technician = 1000 Eur. Total saving = **15.400 Eur**.

IoT Software functions enabling doing that: backups, exporting data, device management, notifications, calendar view, knowledge base, user management.

ROI CALCULATION – USE CASE (3)

Better control and traceability over production quality Automotive Customers specifying IATF16949

Currently the company does not measure all the parameters on all production machines in order to see if one of the parameters changes, which could affect the quality of a product. Defected products can be produced for 4 or even more hours before identifying defect.

Most companies address this by increasing the number of employees in QA department, due to high QA requirements of their customers, especially in automotive industry (assurance, traceability, claim procedures, etc.)

With YCF customer can control all crucial parameters on production machines in order to see changes in real time and prevent defected parts being produced. Immediate detection of defected products. On top of that full traceability for each product.

Decrease cost/staff in Quality Management, comply with Automotive requirements, big savings in managing claim procedures.

ROI CALCULATION – USE CASE (4)

Reducing Scrap Rate from 7% to 5% and Part sorting costs in case of defect claims

With IoT SW, customer gets notifications immediately and can initiate immediate reaction based on exact production figures.

Q

Current scrap rate on production line **7%**: cycle time = 60 sec/part, 480 parts/shift, 8.640 parts/week (18 shifts); 414.720 parts/year (48 CW) Part production price = 4 Eur on one production line only!

In case of defect: manual sorting to identify exact number of defected parts: 3 days stock in production + 3 days stock at customer + 2 days on the way = 24 hours*60 part/hour = 1.440 parts/day sorting only for 1 occurence of claim

	No.	EUR
Potentially infected parts - 8 days production	11.520	
Sorting cost per part	11/1/	0,5
Sorting cost	MAS S	5.760

Total saving: 33.178 Eur + 5.760 Eur = 38.938 Eur

Not even considering reputation and the penalty of customer for claim!

Robots in the Smart Factory

Dr. Michael Klos, YASKAWA Robotics Europe

- 1. Who is Yaskawa ?
- 2. Smart Digital Workflows
- 3. Smart IoT and AI based Production Management

VASKAWA

- 4. Smart Robotics Plug & Play Mindset
- 5. Smart Programming with the Smart Pendant
- 6. Conclusions

SMART ROBOTICS – THE CHALLENGE

THE CLASSICAL ROBOT CELL PLANNING MINDSET

Workcell Layout by experienced SI

Tooling & Fixtures customized

55

Programming by experienced SI by experienced SI by experienced SI

Operation

24/7

TARGET USE CASES:

- **System Integrators**
- High volume, flexible industrial production
- Tailored, optimized automation solutions
- Usage period >3 years, litte changes after • installation
- Robots embedded in workflows and • communication networks
- Upfront ROI, Availability, TCO, cycle time targets •
- **Functionality, Connectivity** •
- **Experienced Programmers** •

SMART ROBOTICS – THE CHALLENGE

THE CLASSICAL ROBOT CELL PLANNING MINDSET

Workcell Layout by experienced SI

Tooling & Fixtures by experienced SI by experienced SI by experienced SI customized

24/7

Operation Programming

TARGET USE CASES:

- Entry level users starting to automate
- Small volume, high mix
- Configurable plug&play toolkits to realize multiple standard automation solutions
- Usage period not defined, high likelyhood for repurposing and changes after installation
- Standalone use cases
- Limited technical complexity Clarity, simplicity, intuitiveness
- No clear ROI picture
- **Novice Programmers**

TARGET USE CASES:

- **System Integrators**
- High volume, flexible industrial production
- Tailored, optimized automation solutions
- Usage period >3 years, litte changes after installation
- Robots embedded in workflows and • communication networks
- Upfront ROI, Availability, TCO, cycle time targets
- **Functionality, Connectivity**
- **Experienced Programmers**

SMART ROBOTICS – ACTIONS ADDRESSING CUSTOMER NEEDS

YASKAWA

© 2021 YASKAWA CONFIDENTIAL INFORMATION ALL RIGHTS RESERVED

September 23, 2021

SMART ROBOTICS – THE SMART SERIES PROGRAM

Web Configurator and **Engineering Tools**

E-Learning & Trainings

How-To Videos

Plug&Play Partner Program

https://www.yaskawa.eu.com/ products/robots/smart-series

YASKAWA

© 2021 YASKAWA CONFIDENTIAL INFORMATION ALL RIGHTS RESERVED

46

APPLICATION SPECIFIC SOFTWARE APPS

MOVE
MOVE
-
1
1
WELD TO
CIBCLE

Arc Welding Yaskawa Welding Wizard

Palletizing Yaskawa Pallet Solver

Arc Welding (Cobot) Hand guided programming

YASKAWA

Cobot Model HC10DT-IP67 (Collaborative Robot)

https://www.youtube.com/watch?v=P-OqTfwPqUU

YASKAWA

© 2021 YASKAWA CONFIDENTIAL INFORMATION ALL RIGHTS RESERVED

September 23, 2021

SMART ROBOTICS - TURNKEY PACKAGES (EXAMPLES)

ARC WELDING

by Yaskawa

YASKAWA

MICRO BREWERY PACKAGING

by Yaskawa & System Integrators

Customer

Yaskawa S

System Integrator

PALLETIZING

by System Integrators

© 2021 YASKAWA C

© 2021 YASKAWA CONFIDENTIAL INFORMATION ALL RIGHTS RESERVED

September 23, 2021

49

SI: SIDEL Robot Model: MOTOMAN HC20 (Collaborative)

https://www.youtube.com/watch?v=YXS9zqmub8Q

YASKAWA

Robots in the Smart Factory

Dr. Michael Klos, YASKAWA Robotics Europe

- 1. Who is Yaskawa ?
- 2. Smart Digital Workflows
- 3. Smart IoT and AI based Production Management
- 4. Smart Robotics Plug & Play Mindset
- 5. Smart Programming with the Smart Pendant

YASKAWA

6. Conclusions

SMART ROBOTICS – THE SMART FRAME TECHNOLOGY ©

SIMPLE TOOL CONFIGURATION (TCP SETUP)

TCP CALIBRATION

Smart Pendant

Teach Pendant

DATA	EDIT	DISPLAY	UTILITY	12 🗹 🚧 🌭 🕼 🕞 🖨 🎸
JOB GENERAL VARIABL BOO1 IN/OUT ROBOT SYSTEM IN		OOL CALIBRATIO TOOL NO.: 00 1 :S L U R B T	N * * * * * *	METHOD Coord+Posture POSITION TCT <status> TC1 : O TC2 : O TC3 : O TC3 : O TC4 : O TC5 : O</status>
		COMPLETE	CANCE	
Main Menu	Simple Me	nu I/F Panel	by TC	TAL CRC Confirm has been changed.

TOOL LOAD ESTIMATION

INPUTS/ OUTPUTS (I/O'S)

Smart Pendant

Teach Pendant

Inpu	uts	Outputs 4	Go To:	1				<u></u>	Settings
Group	Outputs	Status (B 7 6 5 4	its) 3 2 1	0	GROUP	: 1 T: 1-8		VALUE (DEC	;): 3 (): 0x03
1	1-8	80000	000	• 1	TYPE: 1	Ferminal B	lock	- Frahla	
2	9-16	0000	000					Enable	toggle
3	17-24	0000	0000	С	Outputs	Status	Name		Toggle
4	25-32	0000	0000	C	1	•	io100	10	
5	33-40	•000	0000	С	2	•			
6	41-48	0000	0000	С	3	0			
7	49-56	0000	0000	C	4	0			
8	57-64	0000	0000	C	5	0			
9	65-72	0000	•000	C	6	0			
10	73-80	0000	0000	С	7	0			
11	81-88	0000	000	C	8	0			

DATA	EDIT	DISPLAY	UTILITY	12 2	M 🗞 🔟 🕞 🖨	Þ
JOB GENERAL VARIABLE BOO1 IN/OUT IN/OUT ROBOT SYSTEM INFO SYSTEM INFO		RAL PURPOSE OUP T#0001 #10 T#0002 #10 T#0003 #10 T#0004 #10 T#0005 #10 T#0006 #10 T#0007 #10 T#0008 #10	OUTPUT OG#001 0 0010 0 0011 0 0012 0 0013 0 0014 0 0015 0 0016 0 0017 0	:DEC. 00:	HEX.	
					PAGE	
Main Menu	Sim	ple Menu				

SAFETY LOGIC CIRCUIT

Smart Pendant

Diagram, Drag & Drop with muti-level logic

DATA	EDIT	DISPLAY	UTILITY	12 🖻 🚧 🗞	🛛 🖵 🖨 🎸	Þ
EX. MEMORY	SAFET	Y LOGIC CIE INPUT1	RCUIT STS LOGIC	: DONE INPUT2	OUTPUT	Ī
PARAMETER	001 N 002 003	MS-OUT55 #1 FSBI			O MS-OUT54 O #1 FSBOUT01 O #1 FSBOUT02	
SETUP		#1 F2B1				000
SAFETY FUNC.	008					0000
РМ —	011 012 012					0000
DISPLAY SETUR	COMME	II INT: New L	.ogic 1			
				PAGE		
Main Menu Sir	mple Menu I	/F Panel	[:] irm has	been changed.	The paramet	er /

ETHERNET/IP AND I/O ALLOCATION

Smart Pendant

Teach Pendant

Graphical setup and NO MAINTENANCE MODE required

- I/O Confi	guration	(+) NE	WALLOCATION			
List	Input Table	Output Ta	able			
lame	Туре		Input Size	Output Size	IP Address (Scanners)	
SF01(Al001 NP	N) Termina	Block	2 bytes	2 bytes	1	
therNet/IP CPU	EtherNet	/IP Status	1 bytes	1 bytes	-	
therNet/IP CPU	EtherNet	VIP Adapter	16 bytes	24 bytes	÷	
IPA	EtherNet	/IP Scanner	8 bytes	5 bytes	10.7.3.21	0
ettings - Ether	Net/IP Scanne	er.				~
iettings - Ether Iame IPA	Net/IP Scanne	IP Address 10.7.3.21				~
iettings - Ether Iame IIPA	Net/IP Scanne	IP Address 10.7.3.21 Size (bytes)	Starting Group #	I/O Range (bits)	External Range (Yaskawa)	~
ettings - Ether ame IPA Input:	Net/IP Scanne Instance Id 60	rr 10.7.3.21 Size (bytes) 8	Starting Group # 20	1/0 Range (bits) 153-216	External Range (Yaskawa) #20230-#20307	~
ettings - Ether ame IPA Input: Output:	Net/IP Scanne Instance Id 60 50	IP Address 10.7.3.21 Size (bytes) 8 5	Starting Group # 20 28	1/0 Range (bits) 153-216 217-256	External Range (Yaskawa) #20230-#20307 #30310-#30357	~
ettings - Ether ame IPA Input: Output: configuration:	Instance Id 60 50 30	r 10.7.3.21 Size (bytes) 8 5 0	Starting Group # 20 28	1/O Range (bits) 153-216 217-256	External Range (Yaskawa) #20230-#20307 #30310-#30357	~
iettings - Ether Inpa Input: Output: configuration:	Instance Id 60 50 30 API Targel-Scr	r IP Address 10.7.3.21 Size (bytes) 8 5 0	Starting Group # 20 28	1/O Range (bits) 153-216 217-256	External Range (Yaskawa) #20230-#20307 #30310-#30357	*
lettings - Ether IPA Input: Output: configuration:	Instance Id 60 50 30 RPI Target-och 20	rf 10.7.3.21 Size (bytes) 8 5 0 0	Starting Group # 20 28 Connection Type Exclusive Owner	1/0 Range (bits) 153216 217-256	External Range (Yaskawa) #20230-#20307 #30310-#30357	*

58

Robots in the Smart Factory

Dr. Michael Klos, YASKAWA Robotics Europe

- 1. Who is Yaskawa ?
- 2. Smart Digital Workflows
- 3. Smart IoT and AI based Production Management

VASKAWA

- 4. Smart Robotics Plug & Play Mindset
- 5. Smart Programming with the Smart Pendant
- 6. Conclusions

So many more challenges out there, crying for automation let's talk !

© 2021 YASKAWA Europe GmbH

Dr.-Ing. Michael Klos General Manager Business Development Robotics Division

YASKAWA Europe GmbH Robotics Division Yaskawastr. 1

85391 Allershausen GERMANY www.yaskawa.eu.com

Mobile: +49 (0) 151 / 613 405 25 Michael.Klos@yaskawa.eu.com

YASKAWA

63