ADVANTAGES AND CHALLENGES USING AI FOR AUTONOMOUS DRIVING

DR. NIKLAS BEUTER

Bosch CR Hildesheim About me

- ► Dr.-Ing. Niklas Beuter
- ► From 2003-2007 study about information science and robotics
 - ► Machine Learning
 - ► Computer Vision
 - Pattern Recognition
 - ► Intelligent Systems
- ► From 2008-2011 PhD in intelligent systems
 - ▶ Financed by Daimler
 - ▶ 3D Human Detection and Tracking on a Mobile Platform for Situation Awareness

- ► Started at CR@Bosch in 2011
 - Studies and projects around autonomous driving
 - ► Small project leads, driving innovation
- ► Changed to BU 2015
 - Product owner for parts of biggest video product
- ► Returned to CR in 2020
 - ► Senior Manager Computer Vision Machine Learning

Advantages and challenges using Al Introduction

- ▶ Why using AI in your product?
- ▶ What are the changes and challenges in the general SW development using AI?
- ▶ What do you need to consider for validating your SW / system?
- ▶ What are the measures and methods for the verification of a safety critical AI function?

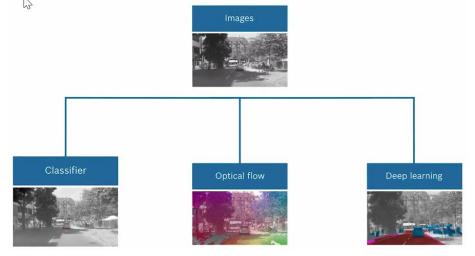
Advantages and challenges using AI CR Hildesheim – Communication & Video competence for Bosch

▶ Video is used in many domains @ Bosch: AD, ADAS, Interior Sensing, Security, Robotics, IoT, ...

Autonomous driving since 2013

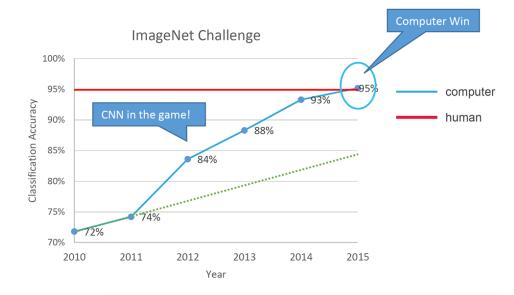
Driver Assistance

Security

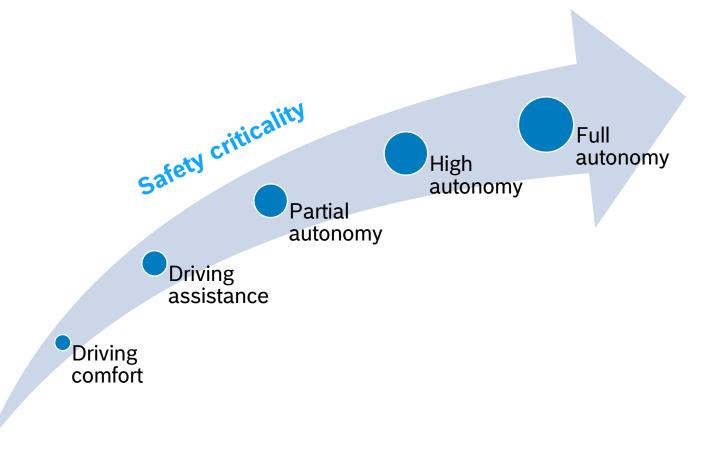

Body Pose

Scene understanding

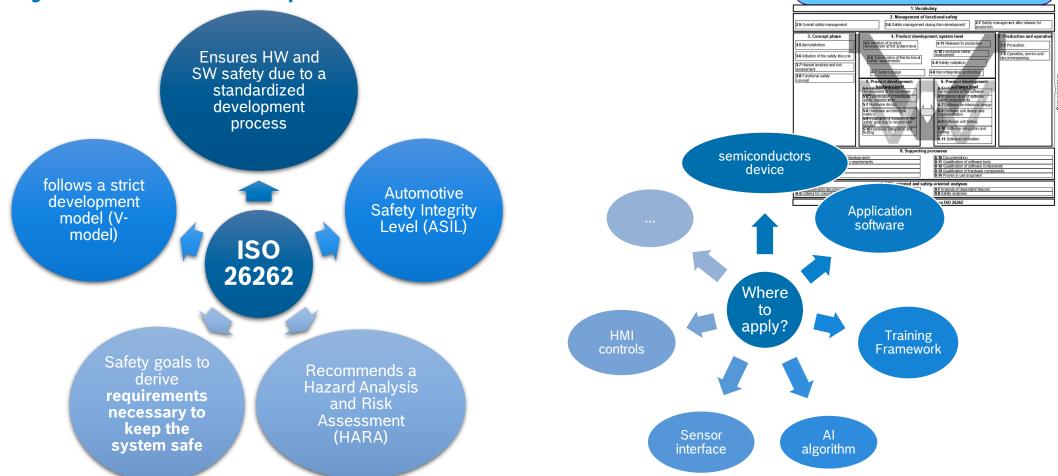
Advantages and challenges using Al Why using Al in your product?

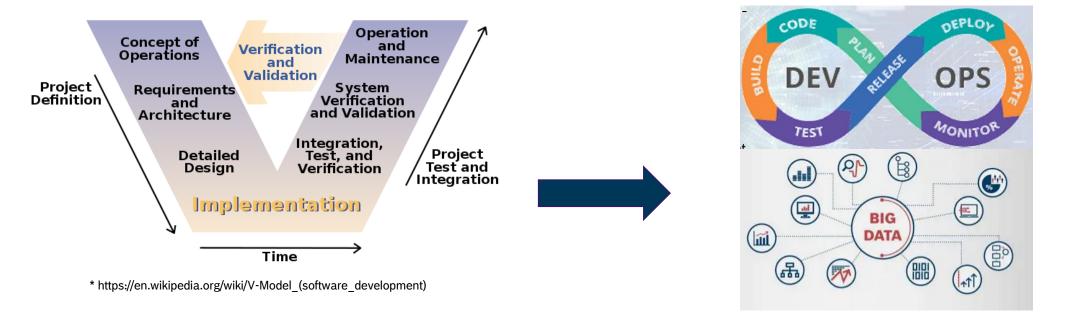


Advantages and challenges using Al Why using Al in your product?


- ► Performance gain using AI
 - ► In the last years close to 100% of academia changes to deep neural networks in the computer vision object detection domain
 - Results are superior due to massive amount of available data and computation power
 - ► In many tasks the algorithmic solution is even better than humans
 - ► Hardware specifically designed for embedded AI is more and more available
 - ► Know how available to get algorithms small enough to fit them on a chip even with high performance

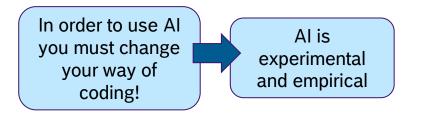
Task	Error (rate) human	Error (rate) machine
Face recognition	2,6 %	2,5 %
OCR (handwriting)	4,5 %	3,3 %
Geolocalization Photos	2.320 km	1.130 km
Date of photos taken	10,9 years	7,3 years


Advantages and challenges using AI Safety critical development in automotive domain

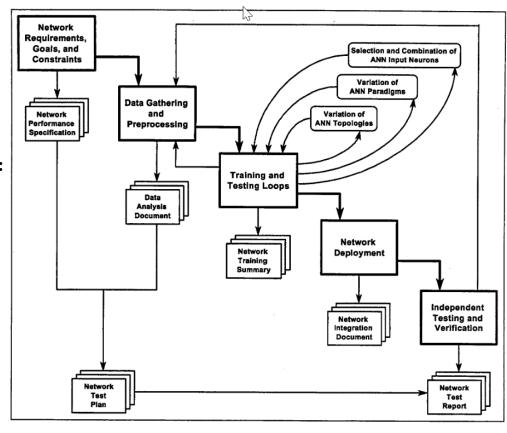

Advantages and challenges using AI Safety critical development in automotive domain

ISO 26262 Road vehicles – Functional safety

Advantages and challenges using AI What are the changes and challenges in SW development with AI



Al SW development has the difficulty of the extreme high-dimensionality, also called "black box"


- We do not code the behavior, but **we present data**, which represents the feature space to learn. Using this data, the neural network "learns" the behavior.
- The network needs to generalize from the "seen" data
- The difficulty lies in the verification that the network has learned the right behavior / generalization

Advantages and challenges using AI What are the changes and challenges in SW development with AI

- ▶ Usually, following steps are necessary to embed AI in your SW:
 - 1) Formulation of requirements and goals
 - ▶ 2) Selection of training and test data sets
 - ▶ 3) Selection of the neural network architecture
 - 4) Training of the network
 - ► 5) Testing of the network
 - ▶ 6) Acceptance and use by the customer.
- Documentation!

Advantages and challenges using AI What are the changes and challenges in SW development with AI

- ► In addition to ISO 26262, **ISO/PAS 21448 SOTIF** (safety of the intended functionality) must be fulfilled.
 - ► SOTIF ensures the intended functionality and avoids misuse
 - Analyze possible hazards and verify and validate SOTIF
- ► SOTIF is very difficult to achieve with an AI system
 - ► Inadequateness in the AI enabled system for perception and safe drive operation
 - Wrong selection of algorithm or inadequate training data set
 - Unexpected situations / complex scenarios or even adversarial attacks
 - Image sensor problem due to out-of-calibration error or sensor performance limitation
- ► Write down the right safety goals and formulate requirements!

*https://www.heise.de/select/ct/2020/17/2016408084704 769749

Advantages and challenges using AI From safety requirements to ML properties

Generalization: Ability to accurately detect inputs outside of the training distribution

Robustness: Ability to detect transient effects and adversarial attacks

Architectural measures

Avoidance of systematic performance failures

Prediction certainty: provide monitoring with accurate inputs

Explainability: Increase confidence in absence of systematic faults

+/- 50 cm detection accuracy (e.g. based on IoU)

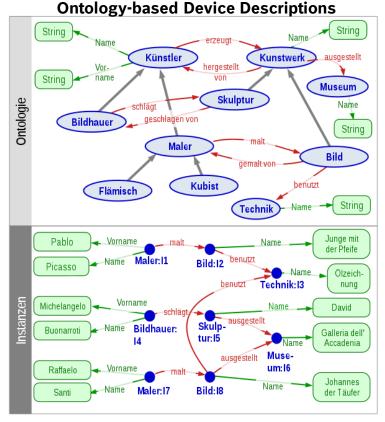
Ability to compensate for effects in the sensors (e.g. lens flare)

Robustness: Ability to react to noise and uncertainty in sensors

Example ML specific criteria

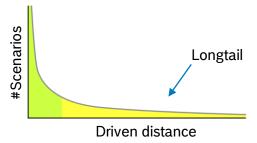
E.g.: Remaining Error Rate of 95% is achieved and the remaining 5% can be detected by the monitor. Target values must be iteratively derived based on an understanding of the performance limits of both the ML function and the architectural measures

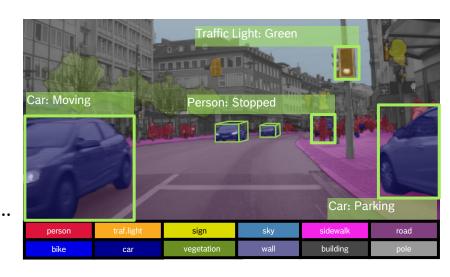
Advantages and challenges using Al


Autonomous driving - Validation approach

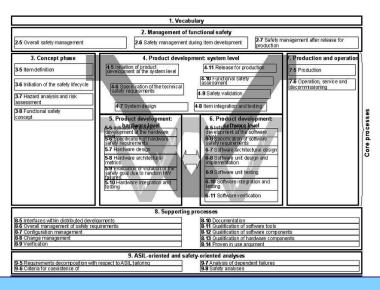
https://venturebeat.com/2020/01/06/waymos-autonomous-cars-have-driven-20-million-miles-on-public-roads/

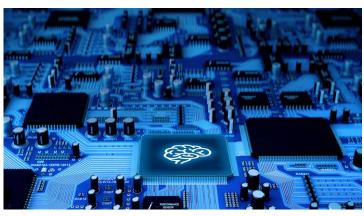
[..] fully autonomous vehicles [..] would have to be driven 275 million failure-free miles.
[..]this would take about 12.5 years.**




https://de.wikipedia.org/wiki/Ontologie (Informatik)

Advantages and challenges using Al Example for usage of ODD


- ► Example of analysis:
 - ► Assumptions (A):
 - ODD: Size, distance, movement of relevant objects, level of occlusion, ...
 - System: Resolution, focus, noise camera, post processing
 - ► Guarantees (G):
 - Each pedestrian within a relevant distance and within the field of view is detected with an accuracy of +/50 cm
- ▶ It is important to go through the whole system and understand its limitations!
 - ► Scalable oversight: lack of data for extreme or corner cases, Distributional Shift over time: Change in distribution of data during operation, ...



Advantages and challenges using AI So, do we have a validation for autonomous vehicles ready?

- ▶ Process focused:
 - ► "The system is safe because we followed the right process"

- ▶ Product focused:
 - "The system is safe because we have demonstrated the absence of faults

- ▶ Risk focused:
 - "The system is safe because we have demonstrated freedom of unacceptable risk"

All approaches are valid - But a combination is required to construct a robust assurance case

Advantages and challenges using Al Summary

Al achieves high performance!

Derive safety requirements over the whole system

Work process, product and risk focused

Al development process

Do not forget security

