Digital Manufacturing 4.0

Human-centered Workplaces of the Future with Integrated Exoskeletons: Digital Twin Exo4*Logi*Prod

Future Work Lab

Carmen Constantinescu

Fraunhofer Institute for Industrial Engineering - IAO Cognitive Engineering and Production, "Digital Manufacturing 4.0"

Online-Event: Cobots und Exoskelette

Overview

- About Us: Fraunhofer Society, Fraunhofer Institute for Industrial Engineering
- My Experience in dealing with »Digital Manufacturing«
- Challenges for ergonomic workplaces in manufacturing and Musculoskeletal Disorder MSD
- Exoskeleton technology Modular concept. Benefits, Challenges
- Digitalisation of human-centred workplaces with integrated Exoskeletons. Application examples
- Exo4LogiProd 4 Steps methodology
- Demonstration in Future*Work*Lab: active and passive Exoskeletons

Fraunhofer Institute for Industrial Engineering IAO Institute of Human Factors and Technology Management, University of Stuttgart

- IAO 1981, IAT 1991
- 51.8 million euros, of which 33,7% are generated from industry
- ~650 employees

Figures from 2018, including IAT University of Stuttgart

- **Areas of Expertise:**
 - Corporate Development and Work Design
 - Service and Human Resources Management
 - **Cognitive Engineering and Production**
 - Information and Communication Technology
 - Technology and Innovation Management

Which are the most challenging workplaces?

What is Musculoskeletal Disorder - MSD?

Future Work Lab

Exoskeleton technology? Modular Concept

Passive Exoskeletons and applications in manufacturing

Active Exoskeletons: Research prototype and commercial product

ExoJacket: Fraunhofer IPA – Research active Exoskeleton demonstrator for upper body support and protection

CrayX: German Bionic Systems GmbH – Active commercial Exoskeleton for lower back support and protection

Motivation for Exoskeleton-based Workplaces

Exoskeletons:

- technology for ergonomics, safety and environmentally friendly workplaces (lowering, lifting, carrying and twisting of heavy goods and working over the head);
- increases and stimulates innovation, concentration capability, self-estime

Benefits:

- Ergonomic and safety workplaces
- Increased worker safety, security, satisfaction, motivation
- Enhanced worker capabilities: concentration, innovation
- Increased industrial sustainability:
- social (ergonomics, safety);
- environment (CO2);
- productivity (high quality, precision, innovation).

Technical challenges:

- Comfort: up to 8 hour shifts, new work models?
- Unhindered movements
- Initial settings, wear/un-wear time; external support
- Power supply
- Mental harassment
- Captured data security, confidentiality, anonymization
- ELSI aspects: ethic, legal, social

Design and optimization of human-centered workplaces with integrated Exoskeletons – Exo4LogiProd

1. Digital Twin of "As it is" State

- 2. Ergonomics simulation of " As it is" State
- 3. Human+Exo Digital Twin Coupling Exoskeleton and Human **Digital Twins**
- 4. Ergonomics simulation of the "As it should be" State with Human+Exo Digital Twin
- 5. Analysis **"As it is" vs. " As it should be"** States
- 6. Planning/optimisation of hybrid workplace with integrated Exoskeletons. Hybrid working models. Implementation Roadmap and incremental improvments

OWAS (Ovako Working Posture Analysis)

"Report Ergonomics Metrics", LBA (Lower Back Analysis)

Force Solver

Future Work Lab

Digital Transformation with Exoskeleton? (I)

Car recycling Test Case: Removal of the driver's seat and of the battery

- Manipulated part: 25kg and 15kg;
- Distance walked per day: 1200m;
- Weight moved per day: 700kg.

Without Exoskeleton

With Active Exoskeleton

Lower Back Analysis Tool: 1) Forces (N); 2) Moments (Nm); 3) Muscle Tension (N); 4) DMH – Moment distribution

Digital Transformation with Exoskeleton? (II)

Car assembly Test Case: Working over the head - Shields Mounting

- Manipulated part: Screwing Machine 1,6kg;
- Distance walked per day: 700m;
- Process time/screw: 0,73 seconds;
- No. of screws: 13
- Torque Moment applied on the workers hand: 2,6Nm.

Force Solver Analysis Tool: Health of body joint based on frequency, cycle time, shift duration

With Passive Exoskeleton

Digital Transformation with Exoskeleton? (III)

Simulation/ergonomics analysis without Exoskeleton

Construction industry: Manipulation of heavy parts

Test Case: Removing cement blocks for the Silos Maintenance

- Weight of the manipulated part: 20kg;
- Number of the manipulated parts/day: 250;
- Hours/Shift: 10;
- Weight moved by workers per day: 5000 kg.

Muscle Tensions (N)

EOJ LDJ ESJ

(EO) External Oblique 🛛 (RA) Rectus Abdominu

101

(IO) Internal Oblique

RAI

10 r

(ES) Erector Spine
 (LD) Latissimus Dorsi

Real life - Workplace model

Digital Transformation with Exoskeleton? (IV)

Future Work Lab

Slide 16

Reference projects

Research:

BMBF: Exo4LogiProd - Arbeitsplätze der Zukunft mit integrierten intelligenten Exoskeletten für Logistik- und Produktionsprozesse in KMU (2019-2022)

BMBF: Handwerk4.0 – Exoskeleton and Human-Robot Collaboration (in preparation)

EU FP7: RoboMate - Intelligent exoskeleton based on human-robot interaction for manipulation of heavy goods in Europe's factories of the future (2013-2017)

Industry:

- Automotive
- Construction
- Energy
- Logistics
- Food Processing

©Fraunhofer IAC

Real-time motion capture technology

Xsens - full body motion capturing © (https://www.xsens.com)

- Wearable sensor platform: 17 motion capturing sensors displaced all over the body for every movement part/joint
- MVN (Motion Virtualisation Technology)
- Analyze output supports joint angles, segment kinematics, segment global positions, and extensive sensor data.

Manipulation of heavy loads – Active Exoskeleton

Manipulation of heavy loads – In controlled environment

- Weight of the manipulated part: 15kg;
- Motion capture device reproduces in the virtual environment the movement and behavior of the human worker;
- The human worker is enhanced with a lower back support –
 Exoskeleton manufactured by GBS©
 (https://www.germanbionic.com/)

Working over the head – Passive Exoskeleton

Working over the head in controlled environment

- Working over the head assembly tasks
- Motion capture device reproduces in the virtual environment the movement and behavior of the human worker;
- The human worker is enhanced with a upper-limbs support Exoskeleton manufactured by SkelEX© (https://www.skelex.com/)

Many warmly thanks!

Digital Twin Exo@Manufacturing2.0

